Hoshi University has its origin in the staff education division of Hoshi Pharmaceutical Company and is a “university specializing in research and education” supported by over 100 years of tradition. The university consists of the School of Pharmacy and Pharmaceutical Sciences and the Graduate School of Pharmaceutical Sciences, and 1,800 students are currently enrolled. It is not only an educational institute for developing highly skilled pharmacists and drug discovery researchers, but also a research institute for developing cutting-edge pharmaceutics. We are striving to strengthen our research ability and contribute to an ever-evolving society.

Hoshi University’s drug research and development prowess is preeminent among the pharmaceutical universities in Japan

Hoshi University is not only an educational institute for developing highly skilled pharmacists and drug discovery researchers, but also a research institute for developing cutting-edge pharmaceutics. We are striving to strengthen our research ability and contribute to an ever-evolving society.

A Gate to the World
“Advanced Life Science Research Center”
A highly expected laboratory aiming at strengthening collaboration with researchers and corporations all around the world.

L-StaR (Life Science Tokyo Advanced Research Center)
L-StaR aims to explore the possibility of novel pharmaceutics by connecting with and integrating cutting-edge knowledge on leading scientific fields all around the world, such as brain- and neuro-sciences, cancer and palliative medicine researches, regenerative medicine, epigenetics and genome editing.

GRIL (Global Research Center For Innovative Life Science)
GRIL is a research center aiming at developing breakthrough novel drugs and health food materials via industry-government-academia cooperation by matching the seeds created from advanced basic research at our university and the needs of society.

Introducing Hoshi University as a research institute having the Advanced Life Science Research Center as a core.

All Students Experience “Individual Research”
So they acquire “problem solving ability” and “unique innovative ability” to help them play active roles at actual work places after graduation.

At our university, even students who want to be pharmacists join a lab and carry out individual research in a highly specialized field. In this way, they are given opportunities to think by themselves while seeking the true nature of pharmaceutics, which cannot be learnt just by attending lectures.

Our education does not aim to help students pass the National Examination for Pharmacists, but is based on the concept that students need to carry out researches by themselves in order to acquire the abilities to understand the true nature of a problem and solve it, create original ideas, and become an active member of society.

Our university provides many opportunities for them to experience such research, and many of our graduates are engaged in R&D activities.

Introducing Hoshi University as an educational institute which contributes to society by creating pharmaceutical specialists.
I am proud that Hoshi University is a “university for research and education.” I believe that a university can fulfill its important roles, “succession of knowledge” and “creation of knowledge,” only when education and research are present as two wheels. Hoshi University has a long tradition and notable basic research ability among private universities in Japan. In this sense, we already have the foundation as a university for research and education.

However, when pharmaceutical science is considered to be a practical science, a question arises. Is it sufficient just to establish the foundation to deepen academics in order to develop useful human resources for practical science demanded by society? Having worked as a corporate researcher long and having much experience in carrying out research and development, I think that university education and research should further contribute to the development and activation of society.

And now, our university has initiated a new effort called Advanced Life Science Research Center focusing on the fields of palliative medicine and brain- and neuro-sciences, which are the strength of our university, to sublimate the scientific base of advanced pharmaceutics inherited and created for over 100 years of the university’s history into practical science which meets the needs of society.

From now on, using this Advanced Life Science Research Center as a gateway, we will connect with corporations, universities and researchers all around the world and will publicize our new research achievements, novel drugs and health food one after another, which can be produced only by “Hoshi.” Furthermore, cooperation and coordination with many researchers engaged in drug development and corporations will open up the possibility of human resource development which has been difficult to attain by conventional university education alone. Definitely choose Hoshi University, a university for research and education, as the place to raise your knowledge of pharmaceutics to a higher level.

Sublimating University Education and Research into Practical Science to Contribute to Society... That is our mission.

Takaharu Tanaka
Hoshi University President
In the Meiji Period (from the late 19th century to the early 20th century), during the early stages of Japan’s modernization period, many young people left the country to study leading edge technologies and, with that, to make Japan an affluent country. Hajime Hoshi was one of them. He went to the US and studied frantically. He learned that in America people managed their health using over-the-counter drugs - a system which was yet to be established in Japan at the time. He did not waste his time absorbing as much knowledge in the field as possible. 

At the root of our university’s foundation lies such experiences of Hajime Hoshi.

```
Wall painting at the entrance hall
The entrance to the Main Hall forms an atrium open from the first to the third floor. The walls along the tamps between floor are decorated with artwork based on a motif of traditional medicine gathering from the Asuka Period or classical Japan.
```

The design of our university’s Main Hall was inspired by the Low Memorial Library at Columbia University where Hajime Hoshi studied.

Hajime Hoshi (left) and Hideyo Noguchi (right) developed deep friendship in America.

```
Nobel Laureate Dr. Fritz Haber came to our university with a letter of appreciation from the president of Germany.
```

His encounter in America - the land of freedom - with medicine supporting peoples’ everyday lives.

```
˒
```

During his 12-year stay in the US, he got acquainted with many distinguished people, including Hirobumi Ito, the first prime minister of Japan, and Thomas Edison. Among them, Dr. Hideyo Noguchi, who is known for his research on yellow fever and was also from the same prefecture as Hoshi, stands out. When Dr. Noguchi had to go back to Japan to see his mother, Hoshi supported his travel expenses.

```
Nights away talking about the future of medicine with his lifelong friend, Dr. Hideyo Noguchi.
```

```
˒
```

```
1901
```

```
1894
```

Kindness first: Paying back Germany, the country which helped Japan realize its technological development.

```
˒
```

```
1920
```

```
Our university is a ‘cradle’ in which talents who will serve the world are fostered.”
```

This is the educational policy of Hoshi University. Like Hajime Hoshi who dedicated his life to the advancement of medicine in Japan, the faculty and staff are working as one to produce graduates who will serve society. Based on this principle, we have produced many outstanding pharmacists and drug discovery researchers domestically and internationally and established ourselves as one of the best private pharmaceutical universities in Japan.

```
˒
```

```
Hajime Hoshi (left) and Hideyo Noguchi (right) developed deep friendship in America.
```

Kindness first” was Hajime Hoshi’s motto. There is an episode expressing this spirit well; after World War I, he donated two billion yen in today’s value to the German science community which was facing financial difficulties at the time. He used his private assets for the donation despite Hoshi Pharmaceutical’s business not going well. Some say that his support created a foundation from which three German scientists subsequently won the Nobel Prize.

```
˒
```

```
1920
```

```
1901
```

“Our university is a ‘cradle’ in which talents who will serve the world are fostered.”

This is the educational policy of Hoshi University. Like Hajime Hoshi who dedicated his life to the advancement of medicine in Japan, the faculty and staff are working as one to produce graduates who will serve society. Based on this principle, we have produced many outstanding pharmacists and drug discovery researchers domestically and internationally and established ourselves as one of the best private pharmaceutical universities in Japan.

```
˒
```

```
Birth of Hoshi University – How our university was founded by Hajime Hoshi.
```

Hajime Hoshi

Born in Fukushima Prefecture in the Tohoku Region of Japan in 1873, he went to America at the age of 20 to study statistics at Columbia University. After returning to Japan, he established Hoshi Pharmaceutical Company in 1911. The company succeeded in the industrial production of alkaloids, such as morphine, cocaine and atropine, for the first time in Japan.

```
Hajime Hoshi
```

```
˒
```

```
1894
```

In the Meiji Period (from the late 19th century to the early 20th century), during the early stages of Japan’s modernization period, many young people left the country to study leading edge technologies and, with that, to make Japan an affluent country. Hajime Hoshi was one of them. He went to the US and studied frantically. He learned that in America people managed their health using over-the-counter drugs - a system which was yet to be established in Japan at the time. He did not waste his time absorbing as much knowledge in the field as possible.

At the root of our university’s foundation lies such experiences of Hajime Hoshi.

1894

```
˒
```

In the Meiji Period (from the late 19th century to the early 20th century), during the early stages of Japan’s modernization period, many young people left the country to study leading edge technologies and, with that, to make Japan an affluent country. Hajime Hoshi was one of them. He went to the US and studied frantically. He learned that in America people managed their health using over-the-counter drugs - a system which was yet to be established in Japan at the time. He did not waste his time absorbing as much knowledge in the field as possible.

At the root of our university’s foundation lies such experiences of Hajime Hoshi.

```
˒
```

In the Meiji Period (from the late 19th century to the early 20th century), during the early stages of Japan’s modernization period, many young people left the country to study leading edge technologies and, with that, to make Japan an affluent country. Hajime Hoshi was one of them. He went to the US and studied frantically. He learned that in America people managed their health using over-the-counter drugs - a system which was yet to be established in Japan at the time. He did not waste his time absorbing as much knowledge in the field as possible.

At the root of our university’s foundation lies such experiences of Hajime Hoshi.

```
˒
```

In the Meiji Period (from the late 19th century to the early 20th century), during the early stages of Japan’s modernization period, many young people left the country to study leading edge technologies and, with that, to make Japan an affluent country. Hajime Hoshi was one of them. He went to the US and studied frantically. He learned that in America people managed their health using over-the-counter drugs - a system which was yet to be established in Japan at the time. He did not waste his time absorbing as much knowledge in the field as possible.

At the root of our university’s foundation lies such experiences of Hajime Hoshi.

```
˒
```

In the Meiji Period (from the late 19th century to the early 20th century), during the early stages of Japan’s modernization period, many young people left the country to study leading edge technologies and, with that, to make Japan an affluent country. Hajime Hoshi was one of them. He went to the US and studied frantically. He learned that in America people managed their health using over-the-counter drugs - a system which was yet to be established in Japan at the time. He did not waste his time absorbing as much knowledge in the field as possible.

At the root of our university’s foundation lies such experiences of Hajime Hoshi.

```
˒
```

In the Meiji Period (from the late 19th century to the early 20th century), during the early stages of Japan’s modernization period, many young people left the country to study leading edge technologies and, with that, to make Japan an affluent country. Hajime Hoshi was one of them. He went to the US and studied frantically. He learned that in America people managed their health using over-the-counter drugs - a system which was yet to be established in Japan at the time. He did not waste his time absorbing as much knowledge in the field as possible.

At the root of our university’s foundation lies such experiences of Hajime Hoshi.

```
˒
```

In the Meiji Period (from the late 19th century to the early 20th century), during the early stages of Japan’s modernization period, many young people left the country to study leading edge technologies and, with that, to make Japan an affluent country. Hajime Hoshi was one of them. He went to the US and studied frantically. He learned that in America people managed their health using over-the-counter drugs - a system which was yet to be established in Japan at the time. He did not waste his time absorbing as much knowledge in the field as possible.

At the root of our university’s foundation lies such experiences of Hajime Hoshi.

```
˒
```

In the Meiji Period (from the late 19th century to the early 20th century), during the early stages of Japan’s modernization period, many young people left the country to study leading edge technologies and, with that, to make Japan an affluent country. Hajime Hoshi was one of them. He went to the US and studied frantically. He learned that in America people managed their health using over-the-counter drugs - a system which was yet to be established in Japan at the time. He did not waste his time absorbing as much knowledge in the field as possible.

At the root of our university’s foundation lies such experiences of Hajime Hoshi.

```
˒
```

In the Meiji Period (from the late 19th century to the early 20th century), during the early stages of Japan’s modernization period, many young people left the country to study leading edge technologies and, with that, to make Japan an affluent country. Hajime Hoshi was one of them. He went to the US and studied frantically. He learned that in America people managed their health using over-the-counter drugs - a system which was yet to be established in Japan at the time. He did not waste his time absorbing as much knowledge in the field as possible.

At the root of our university’s foundation lies such experiences of Hajime Hoshi.
History of Hoshi University

1911 Starting our university - An institution for training human resources for Hoshi Pharmaceutical Company.

Originally, our university was an educational institution for the staff of Hoshi Pharmaceutical Company. Hajime Hoshi put emphasis on staff education because his success was realized by his own education. Hajime Hoshi’s lifelong belief in “people development” was combined with the community service spirit of “developing talents who can bring health to people suffering from diseases, thus giving them happiness and peace.” These thoughts have been passed on to this day as the educational policy of our university.

1924 Withstanding the Great Kanto Earthquake and World War II, the Main Hall has witnessed the modern history of Japan.

The main hall, a symbol of our university, was built in 1924. The hall is still used as a university building preserving the beautiful geometric patterns designed by a world renowned architect Antonin Raymond. The view of the main hall, which survived such disasters as earthquakes and airstrikes, reminds us of the life of Hajime Hoshi who never lost courage despite hardships and dedicated his life for the advancement of science.

1921 From Hoshi Pharmaceutical Workshop, to Hoshi Pharmaceutical and Commercial School, to Hoshi Pharmaceutical School and to Hoshi University.

Hoshi University started out as an educational institution for Hoshi Pharmaceutical Company which grew in size over time into a workshop for pharmacy personnel, then into a school to teach pharmaceutical knowledge from manufacturing to sales stages and then in 1950 into a pharmaceutical university. Since then, we have contributed to the realization of an affluent society while producing many pharmaceutical specialists.

2001 Newly built ‘Shinseikan’ – the center of cutting-edge pharmaceutical education and research for the future.

Another symbol of our university is Shinseikan, which was completed in 2001. Laboratories equipped with state-of-the-art instruments support our top-notch research in Japan. The Main Hall and Shinseikan, our old and new symbols, represent the essence of the pharmaceutical education and research at our university which is underpinned by over 100 years of tradition and the latest research technologies.

1987 Formation of a sister-school relationship with the Peking University School of Pharmaceutical Sciences (former the School of Pharmaceutical Sciences of Beijing Medical University).

1975 Establishment of Graduate School of Pharmaceutical Sciences, Division of Clinical Pharmacy Doctoral and Master’s course.

1963 Foundation of Hoshi Pharmaceutical School

1950 Foundation of the Institute of Medicinal Chemistry

1941 Foundation of Hoshi Pharmaceutical and Commercial School

1939 Foundation of the High Tech Research Center

1924 Foundation of Hoshi Pharmaceutical Company

Completion of the Shinseikan

1962 Foundation of the Institute of Medicinal Chemistry

1953 Establishment of the Master’s program

1944 Establishment of the Doctoral program

1931 Establishment of the Pharmaceutical course

1920 Two-course system began with the establishment of Biomedical and Hygienic course

1917 Foundation of Hoshi Pharmaceutical Company, including an educational program for all staff including the start of Hoshi University

1911 Foundation of Hoshi Pharmaceutical and Commercial School

1909 Foundation of Hoshi Pharmaceutical Workshop

1900 Establishment of the Main Hall

1897 Establishment of the School of Chemistry

1891 Establishment of the Medical School

1887 Establishment of the Pharmaceutical Course (6 years) and Drug Discovery Science Course (4 years)

2006 Foundation of the Drug Discovery Science Research Center

2001 Our centennial celebration

1987 Completion of the Shinseikan Celebration marking the 90th year since the establishment of the Hoshi educational programs

1997 Establishment of Graduate School of Pharmaceutical Sciences, Division of Clinical Pharmacy Doctoral and Master’s courses

1982 Foundation of the Institute of Medicinal Chemistry

1975 Establishment of the Institute of Medicinal Chemistry

1963 Foundation of the Institute of Medicinal Chemistry

1950 Foundation of the Institute of Medicinal Chemistry

1941 Foundation of the Institute of Medicinal Chemistry

1939 Foundation of the Institute of Medicinal Chemistry

1924 Foundation of the Institute of Medicinal Chemistry

1911 Foundation of the Institute of Medicinal Chemistry

1897 Foundation of the Institute of Medicinal Chemistry

1891 Foundation of the Institute of Medicinal Chemistry

1887 Foundation of the Institute of Medicinal Chemistry

1922 Foundation of the Institute of Medicinal Chemistry

1911 Foundation of the Institute of Medicinal Chemistry

1869 Foundation of the Institute of Medicinal Chemistry

1862 Foundation of the Institute of Medicinal Chemistry
The foundation of “the R&D ability of Hoshi University” is over 20 laboratories to which the authorities of each field belong. And the “Advanced Life Science Research Center” is a new initiative to transmit achievements from here to society.

About Advanced Life Science Research Center
“Advanced Life Science Research Center” was founded in April 2014 and consists of two institutes: one is “L-StaR” which aims to explore the possibility of novel pharmaceutics by connecting with and integrating cutting-edge knowledge in leading scientific fields, and the other is “GRIL” which matches the seeds created from advanced basic research at our university and the needs of society. “Absorbing knowledge from all around the world and sending knowledge from Hoshi University to the world” are two important principles. We believe that with them we can create substantial study results for supporting our aging society.

It is a new attempt in the world for a university to have an institute led by a pharmaceutical science base aiming at strengthening abilities to cooperate and dispatch information to the outside world.

We set this Advanced Life Science Research Center as a core and devote ourselves everyday in order to be a partner with universities, corporations and research institutes all around the world.
At our university, we have over 20 labs separated into different research fields. In each lab, a professor who is an authority in his/her field, other faculties, graduate students and even undergraduate students work together to explore the new possibility of pharmacoeconomics.

Synthetic Medicinal Chemistry

Producing world-class medicinal chemists with diligent knowledge and skills of drug discovery

In our lab, students acquire knowledge and skills of synthetic organic chemistry through total synthesis of natural products which are regulated by the pharmaceutical industry for medicinal chemists. We are also working on exploratory research on therapeutic agents of rare intractable diseases, which should be focused on by academia, and working towards the discovery of novel drugs from Hoshi University. Furthermore, students can grow up to be world-class medicinal chemists through the research of next generation methodology for drug discovery.

Pharmacosynogy

Developing medicines from active constituents in botanical resources around the world

Herbal medicines, which are used in folk remedies and combined with traditional Kampo drug prescription, play an important part in today's healthcare. Plant materials also remain to this day one of the most important sources of biologically active compounds and continue to provide seeds for drug discovery. Our research for active ingredients from Southeast Asian botanical resources through collaboration works led to utilize the abilities of fungi and bacteria. Therefore, our lab aims to develop stereo-selective synthetic technology to produce the desired enantiomeric compound.

Recent identification of its origin, and establishment of excellent variety characterized by high content of secondary metabolites are also important for using medicinal plants. Our medicinal plant garden was established in 1961. In a total area of ca. 1,000 m², more than 400 species are cultivated and exhibited for teaching and experimental purposes. The garden is divided into three areas: the Japanese pharmacopoeia area where the herbal plants are cultivated, the medicinal herb area, and the conservatory.

Organic Chemistry

Development of new medicines and pesticides utilizing the abilities of fungi and bacteria

It is widely known that penicillin, the first antibiotic, was discovered from fungi belonging to the genus Penicillium. To date, many medicines and pesticides are derived from compounds produced by fungi, such as the immunosuppressant “Cytoxan” and the anti-cancer drug “Taxol”. Bacteria, belonging to phylum Proteobacteria, have a high potential to produce organic materials, and their abilities are utilized for the production of useful substances. In our laboratory, we are studying the production of new bioactive substances which utilize the ability of both fungi and bacteria. The aim and the goal of our research is “Development of new medicines and pesticides utilizing the abilities of fungi and bacteria.”

Bioorganic Chemistry

Developing innovative medicines based on biological chemistry

Our laboratory focuses on the following research utilizing synthetic organic chemistry: 1) development of new reactions and methodologies for the efficient synthesis of biologically important molecules including natural products, 2) design and synthesis of molecules with unique biological activities. Design and synthesis of selective inhibitors of hepatitis C virus NS3 helicase, which is an ideal target for antiviral drug development, and a particular interest are also working on the synthesis of aryl-based aggregation-induced emission fluorescent aromatic compounds. Recently, we are working on the development of anti-proliferative parasite drugs.

Biopharmaceutics

Understanding the movement of drugs within the body, and providing information for effective and safe drug treatments

Uncovering the movement of drugs within the body, and providing information for effective and safe drug treatments

Clinical Pharmacokinetics

Understanding the movement of drugs within the body, and providing information for effective and safe drug treatments

Uncovering the movement of drugs within the body, and providing information for effective and safe drug treatments

Biopharmaceutics

Understanding the movement of drugs within the body, and providing information for effective and safe drug treatments

Pharmacology

Understanding the movement of drugs within the body, and providing information for effective and safe drug treatments

Global pharmacology is one of the most important features of modern pharmaceutical science, with particular emphasis on understanding the reasons why a drug works and how it interacts with the body. Our laboratory aims to better understand how drugs are absorbed, distributed, metabolized, and excreted in the body, and how they affect the body's physiological responses. We study the relationship between formulation factors and product properties, such as stability, delivery, and therapeutic effects. We conduct computer-aided engineering (CAE) to develop novel dosage forms and drug delivery systems that enhance efficacy, reduce toxic side effects, and improve quality of life. Through this research, we aim to improve the therapeutic efficacy and safety of medications, leading to better health outcomes for patients. Our ultimate goal is to develop patient-oriented products that address specific disease states or patient subsets, ultimately improving the quality of life for individuals suffering from various health conditions.
The R&D ability of Hoshi University laboratories

Pharmacology

Aiming at a global understanding of refractory diseases and creating new strategies for their treatment

We have been carrying out comprehensive life science researches, which focus on chronic pain, psychiatric diseases, drug addiction, cancer, and aging, and also investigating the causal treatment for various intractable diseases.

We are currently focusing on two studies. One is to develop novel therapeutic approaches for chronic cough and obesity-related diseases. Patients with pulmonary disorders exhibit chronic coughs as a result of enhanced cough sensitivity. Although a close relationship has been reported between airway inflammation and the pathogenic mechanisms of chronic cough, the details are poorly understood. In our research, we seek to elucidate the pathogenic basis of chronic coughs and to propose effective medications to improve these symptoms.

In addition, obesity is known to cause many diseases such as diabetes, cardiovascular disease and psychiatric disease. Moreover, the mechanisms are not clear. Therefore, we investigate the mechanisms by which obesity causes various diseases, especially diabetes and psychiatric disease. Moreover, since controlling food intake is an effective way to treat obesity, we investigate how the central nervous system regulates food intake and propose possible ways to suppress food intake.

Pathophysiology and Therapeutics

Researching the mechanisms of, and effective treatments for, chronic cough and obesity-related diseases

Recent advances in medical science have been bringing great benefits for the patients suffering from cancer and autoimmune disease. However, the majority of osteosarcoma, leukemias and neuroblastoma patients remain incurable because of rapid progression, metastasis or resistance to therapy. We are focusing our attention on the molecular mechanisms of cancer development with cell lines and our unique disease model mice. We aim to develop novel therapeutic approaches based on these findings. Furthermore, autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus diseases such as Graves’ disease, caused by thyroid-stimulating antibodies, are common and exhibit a variety of clinical manifestations. Understanding the disease model mice, we attempt to reveal the immune disorder and dysfunction in several organ systems could occur.

Physiology and Morphology

Investigation of mechanisms underlying cardiovascular diseases such as hypertension and diabetes.

Cardiovascular diseases such as atherosclerosis, hypertension, and diabetes mellitus (DM) represent one of the most important causes of mortality and morbidity worldwide. Although cardiovascular dysfunction including restricted relaxation and augmentation of contractile play an important role in the development of cardiovascular diseases, the detailed mechanisms remain unclear. It is imperative to comprehensively understand the mechanisms underlying cardiovascular dysfunction in such diseases.

For several years, our research has been focused on research on vascular function in cardiovascular diseases, especially DM. Our current interests are 1) elucidation of molecular mechanisms and signal transduction in vascular function, 2) identification of therapeutic target (s) for disease-associated vasculopathy, 3) definition of role of blood vessels as the network between vasculature and other organs in animal models of disease by using pharmacological, physiological, and molecular biology techniques. We believe that our findings provide novel therapeutic target(s) for diagnosis and treatment of cardiovascular diseases.

Education

Cultivating the practical English abilities and critical thinking skills demanded of pharmacists and pharmaceutical researchers in today’s global society

In this ever internationalizing society, it is extremely important for pharmacists and pharmaceutical researchers to learn English. English is essential to gather and search for drug information (DI), understand pharmaceutical related-diseases and pharmacodynamics findings. It is critical for pharmacists to encounter English while on the job, in graduate school, as well as in their respective professional employment with pharmaceutical companies. Students are not only expected to learn the basic knowledge, but also to read and write in English in a wide range of specialized areas. We have encouraged our students to learn the technical (English) required for pharmaceutical specialties, as well as to master general communication skills.

English

Cultivating English skills for communication

The English competence required of pharmaceutical students is of two kinds: one is general English skills, and the other is the ability to use English in their specialized areas. Under the new curriculum students will take more classes taught by native speakers in order to become more familiar with colloquial expressions. Moreover, students will learn important technical terms and acquire the ability to discuss pharmaceutical topics in English. Learning English as a foreign language requires a very long effort on a daily basis. We will provide all the necessary support so that students can enjoy learning English and become independent, well-motivated English learners throughout their lives.

Information Sciences

Learning everything from how to effectively use computers to the fundamentals of data processing skills useful for research and pharmaceutical services

Computers now play an indispensable role in the medical industry. Information management is one of the main tasks computers for researchers and health professionals. Our goal is for students to gain an understanding of the basic concepts of how computers function in the medical field, while learning practical skills and knowledge in their field of research. We consider computer as a necessary skill, the usage of Word, Excel, PowerPoint and other software, e-mail settings and usage manners, how to use of the Web, and the set-up of own information processing systems effective against data leaks. We would like to consider from many different angles how to go about using limited resources and environments to construct an effective system and use it for tasks in the actual medical field.

Psychology

Solving the problems of the mind by observing the behavior of various animals from rats to people

We are currently focusing on two studies. One involves researching the maternal behavior of rats, focusing on mother rats in their infant stage. In this study, we try to understand what is the problem of maternal behavior and whether maternal care affects their future maternal behavior. Currently we use femail rats from their mothers earlier than normal, and apply skin stimulation to them, and then observe whether their maternal behavioral change.

The other study is research on pharmacit communication. We observe the behavior of pharmacists when they give pharmacists on disease and we clarify the conditions that lead to patient satisfaction. It has become new for the patient trust and ability toward pharmacists differ depending on the time spent on giving instruction on the use of drugs and long and often pharmacists look at patients.

Law

Comprehending the legal mind, and preparing for the National Examination for Pharmacists

The biggest goal of studying law is to acquire the ability to perceive things, abstractly and logically, or, in other words, to acquire the so-called legal mind. The acquisition of such thinking processes can be considered a great strength when working as a member of society. However, this is no easy task. We take up examples of conflict cases and explain them in easy-to-understand terms. We reconstruct the logic of the conflict case from a legal viewpoint, and from there to legal a rationalization. To become a pharmacist, students must be familiar with the laws pertaining to pharmaceutical affairs. It is a matter of course for a professional who is trusted by the people. It is not sufficient to only gain knowledge. Through sibling law, students must master the necessary professional knowledges.

Philosophy

To be able to deeply understand the dignity of life and respect the variable values of patients.

Philosophy is a logical subject that is low from the common sense of the world and personal experiences, freely pursuing the true nature of humans. This coincides with the basic spirit of humanism—the core of pharmaceutical education. Students of pharmacy, who are deeply involved with life, will greatly profit from the study of philosophy for the following three reasons. First, they can reconsider whether or not a certain medical act is really contributing to a certain patient’s well-being from the standpoint of the dignity of life. Second, they can understand patients with many differing values as being different from themselves, without being held captive by their own past experiences. Third, by formulating their intentions and feelings toward life into logical themes, they can profitably exchange ideas with others without resorting to emotionally opposing them.

Physics

Physics and mathematics are the foundations of physical chemistry and pharmacy.

To understand specialized subjects, students must first understand the fundamental subjects; physics and mathematics. These are also the basic fields in studying the natural sciences. Physics is closely related to chemistry, and in pharmacy it shares close links with physical chemistry and pharmaceutics. The two primarily focuses on dynamics, mechanics, electromagnetism and elementary quantum theory. The various phenomena observed in physics are expressed in mathematical form, which means that mathematical knowledge is necessary. And we will cover calculus and dynamics in the first half of the text, and electromagnetism and elementary quantum theory in the latter half. Mathematics is the science of numbers, while physics is the science of nature. Mathematics is of course necessary, but it is also necessary to understand the connection of mathematics with natural science.
In recent years, the pass rate of the National Examination for Pharmacists shows that every year, Hoshi University’s pass rate is above the national average.

Having its origin in a pharmaceutical company, our university only has the School of Pharmacy and Pharmaceutical Sciences, and devotes itself to improving our pharmaceutical education and research.

An educational environment which produces first class pharmaceutical specialists.

Our university is a single subject university specializing in pharmaceutical sciences. Our School of Pharmacy and Pharmaceutical Sciences consists of two courses designed to meet students’ future career needs. The six-year Pharmaceutical Course aims to train pharmacists as drug specialists who can perform highly specialized skills in clinical settings. The four-year Drug Discovery Science Course aims to train innovative drug researchers and scientists equipped with basic pharmaceutics as well as specialized knowledge and functions.

Our university offers a master’s course and a doctorate course at the Graduate School of Pharmaceutical Sciences, aiming to produce graduates with highly advanced research ability and profound scholarly knowledge. In the “Division of Pharmaceutical Sciences,” positioned above the Pharmaceutical Course, students explore the possibility of pharmaceutics based on the clinical knowledge of pharmacists. In the “Division of Systematic Pharmaceutical and Life Sciences,” positioned above the Drug Discovery Science Course, students continue to pursue their specific fields of study brought from the undergraduate level at a much more profound level.

Hoshi University’s pass rate

The national average

Hoshi University’s pass rate is above the national average.
Establish a special division to promote “education” and “education and research support.”

The Research Center for Pharmaceutical Education

Division of Research for Pharmacy Students Education
Virtually every student belonging to the six-year education course has intention to obtain a pharmacist license. The first objective of our division is providing the learning support for all students to pass the national examination for pharmacists on their first trial. We consist of specialists for pharmaceutical education and provide a unique and special training program highly motivated students who are anxious about passing the national examination and also provide the learning strategy for individuals in need of special support. Our division constantly engaged in analyzing the trends of new drug information and of the national examination, and takes those into consideration to our original examination. We also participate in the curriculum planning in order to catch up with changes around pharmaceutical world. Accordingly, our division makes a contribution for our university to keep high ratio of successful applicants to the national examination for pharmacist.

Division of Applied Pharmaceutical Education and Research
The goal of our clinical pharmacy education is the development of high-quality pharmacists, not only through the practical training of students in unique participative classes such as small group discussions, but also through focusing on postgraduate education. In other words, we support the education and research of pharmacists after their graduation by providing them with opportunities to learn communication skills, latest techniques and medical information required for specific fields such as chemical therapies for cancer, infection control in hospitals, medication counseling for psychiatric patients, nutrition support teams (NST) and so on.

Division of Pharmacy Professional Development and Research
This division is to form a research unit in the clinical system and basic science faculty. Our mission is to solve various clinical questions that are actually occurring in clinics. We have been investigating the clinical and basic questions by performing clinical and fundamental studies. Subsequently, we are attempting to carry the research findings from bench to bedside bench side (i.e. Translational Research/Reverse Translational Research).

At present, our research is to elucidate of data-mining for professional improvement of pharmacists, the pathogenesis of allergic disease, side effects of anti-cancer drugs, chronic obstructive pulmonary disease (COPD), mechanism of elastic fiber formation and regeneration of elastic fibers, the effect of extracellular matrix on cell function, and so on. We have been working closely with medical institutions, professional associations, and research institutes.

Division of Comprehensive and Fundamental Pharmaceutical Education and Research
The division has two major missions: “all students acquire fundamental pharmaceutical knowledge” and “raising the pass rate of National Examination for Pharmacists”. To achieve the missions, the division staff will prepare special program based on the scholastic data of student achievement, and give individual guidance. Students might be assigned to the division, if they have weak points in any categories, subjects, and/or fields of the pharmaceutical curriculum. In many cases, students don’t notice their weak points by themselves. The staff also supports the cultivation of self-learning abilities and the establishment of a learning habit for updating the knowledge of pharmaceutical sciences during their lifetime. The staff also welcomes students who are grappling with the questions at learning.

Center for Education of Laboratory Training

The aim of the center is to develop talented students with problem solving ability. For this purpose, we support students to learn to build a plan for experiments, experimental skill, consideration for observations, and presentation or description of experiments. Our role is the planning of training contents, including schedule or teaching groups, the management of training room and training costs, and making training texts. We also have been investigating the fundamental aspects of tissue regeneration. The various functions of the cells that comprise our bodies are maintained by tissue microenvironments centered on extracellular matrices that are proteins found between our cells or on cell membranes. We are endeavoring to accomplish tissue regeneration through the up-regulation of cellular activity and the replenishment of extracellular matrix components in order to improve cell functions that have deteriorated due to illness or aging, while establishing new methods of diagnosis.

Minimum requirements for application

Undergraduate Program
Applicants must be at least 18 years of age and must have completed a regular 12-year course of study, or the equivalent if applying from outside Japan.

Graduate School Program
Applicants to the Master’s program are required to have completed a regular 4-year undergraduate course of study outside Japan and must possess a bachelor’s degree. For the Doctorate program, a Master’s degree is necessary. Sufficient Japanese to understand lectures given in Japanese is necessary. For further information, contact the office of admission.
University Life which develops sociable students with rich personalities

Our students not only engage in highly specialized and concentrated academic work but are also enthusiastically involved in school activities, such as club activities and school festivals. There is a wide variety of clubs, from athletic clubs with the experience of winning titles at national meets of pharmaceutical universities to cultural clubs in which members learn Japanese traditional culture, such as tea ceremony and koto music.

Once you come to our school festivals which are organized by our students, you will feel how fulfilling our university life is from the energy our students exert.

Schedule

<table>
<thead>
<tr>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Welcome party for new students held by each club
New students’ laboratory works begin
Welcome party for new students held by guidance groups

First term examination for graduate school
Regular intercollegiate games
The Hoshi University Festival

First entrance examination
Laboratory works continue

Undergraduate entrance examination
Doctoral course oral presentations
Second term examination
Second entrance examination for graduate school

Communication with the Rest of the World
Pharmacy Promoting International Friendship

With its spirit as “Our university is a ‘cradle’ in which talents who will serve the world are fostered,” the University actively promotes a variety of international exchange programs. These include researcher exchange, symposiums and collaborative research, all endeavoring to cultivate true international experts. Through agreements with eight universities in seven countries, the University is broadening its network of academic exchange.

Hoshi University accepts students from all over the world. An increasing number of young people from other countries are studying here. Students from other countries often meet inconveniences due to differences in language, manners and customs. The faculty members are doing their best to ensure that these students can accommodate themselves to their surroundings here. Professors offer extra guidance to international students, including class instructions and advice on both study and daily life.

As of January 2015, we have entered into an agreement with foreign universities as follows.

1987: Peking University, China
2005: Airlangga University, Indonesia
2010: Chulalongkorn University, Thailand / Uppsala University, Sweden
2009: Universiti Putra Malaysia, Malaysia
2010: Chia Nan University of Pharmacy and Science, Taiwan
2012: Zhejiang University of Technology, China
2013: University of Würzburg, Germany
In a green and quiet environment in Metropolitan Tokyo

Shinseikan

This modern structure, with one underground and seven aboveground floors was completed in July 2001. As would be expected in a metropolitan university, research and education is supported by facilities to meet the demands of the information age.

Facilities

Main Hall

Located at the entrance to the campus, this building, designed by the Czech-born architect Antonin Raymond and designated by the Architectural Institute of Japan as a modern Japanese architectural heritage site, is the symbol of Hoshi University.

Library

The library holds 123,000 books mainly in the fields of natural science including medical science and pharmaceutics. Currently, 3,700 titles of electronic journals are accessible. The academic achievements of our faculty are openly accessible via Stella (institutional repository). In addition to the reading rooms of the library, students can use the learning commons for individual and group study.

Central Research Laboratories

Central Research Laboratories are located on the basement and the 5th floors of the Shinseikan and on the basement floor of the Institute of Medicinal Chemistry. These facilities are equipped with a range of instruments for chemical and biomedical analyses, including NMR spectrometers, mass spectrometers, a single crystal diffractometer, a DNA sequencer, a flow cytometer and a Confocal Laser Scanning Microscopy.

Radioisotope Center

The Radioisotope Center is a common facilities for researches and tracer experiments in the field of biochemistry, pharmacology, pharmacokinetics, etc. This center is granted permission to use 15 radioisotopes, for example 1H, 14C, 32P, 35S and 99mTc, from the Nuclear Regulation Authority. This facilities is equipped with various instruments for the analyses of radioactivity, including a liquid scintillation counter, a gamma counter and a bio-imaging analyzer.

Animal Research Center

The Animal Research Center was established to support accurate and reliable animal experiments. This facility includes both clean and SPF-grade rooms for husbandry and animal surgery as well as cleaning rooms and an administrative office. Animals including mice, rats, guinea pigs, rabbits and ferrets are accommodated under rigorously maintained temperature, humidity and light cycle conditions.

Access Map